Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jiyong Yao and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail:
ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{Cu}-\mathrm{S})=0.001 \AA$
R factor $=0.023$
$w R$ factor $=0.054$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathbf{R b H o}_{2} \mathbf{C u}_{3} \mathbf{S}_{5}$

Rubidium diholmium tricopper pentasulfide, $\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$, crystallizes in the orthorhombic space group Cmcm and is isostructural with $\mathrm{RbSm}_{2} \mathrm{Ag}_{3} \mathrm{Se}_{5}$. In the asymmetric unit, the site symmetries of atoms Rb, Cu, and S 2 are mm and those of the other atoms are m. The structure has a three-dimensional tunnel framework, with tunnels built from HoS_{6} octahedra and CuS_{4} tetrahedra. The tunnels are filled with Rb atoms.

Comment

Ternary and quaternary rare-earth chalcogenides containing a combination of d - and f-elements have been reviewed recently (Mitchell \& Ibers, 2002). We report here the structure of $\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$, a new member of this large family. $\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$, which has the $\mathrm{RbSm}_{2} \mathrm{Ag}_{3} \mathrm{Se}_{5}$ structure type (Huang \& Ibers, 2000), crystallizes in space group Cmcm of the orthorhombic system. In the asymmetric unit (Fig. 1), the site symmetries of atoms $\mathrm{Rb}, \mathrm{Cu} 1$, and S 2 are mm and those of the other atoms are m. The structure of $\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$ (Fig. 2) possesses a threedimensional tunnel framework built from HoS_{6} octahedra and CuS_{4} tetrahedra. The tunnel, comprising ten-membered rings of six $\mathrm{Cu}-\mathrm{S}$ bonds and four $\mathrm{Ho}-\mathrm{S}$ bonds, is only large enough in cross-section to accommodate one Rb atom. Each Rb atom is surrounded by a bicapped trigonal prism of eight S atoms, with $\mathrm{Rb}-\mathrm{S}$ separations ranging from 3.293 (1) to 3.460 (1) \AA, comparable with those of 3.247 (2)-3.7951 (4) \AA in $\mathrm{RbNd}_{2} \mathrm{CuS}_{4}$ (Huang \& Ibers, 2000). The Ho-S bond distances range from 2.6497 (8) to 2.787 (1) \AA, consistent with those of 2.672 (2)-2.8009 (3) \AA in $\mathrm{K}_{2} \mathrm{Ho}_{4} \mathrm{Cu}_{4} \mathrm{~S}_{9}$ (Yao et al., 2003), and the $\mathrm{Cu}-\mathrm{S}$ bond distances range from 2.321 (1) to 2.547 (2) A , comparable with those of 2.3448 (9) to 2.534 (2) \AA in $\mathrm{K}_{2} \mathrm{Ho}_{4} \mathrm{Cu}_{4} \mathrm{~S}_{9}$ (Yao et al., 2003).

Figure 1

A view of the asymmetric unit of $\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$, with displacement ellipsoids drawn at the 90% probability level.

Experimental

$\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$ was obtained as yellow needles from a solid-state reaction of $\mathrm{Rb}_{2} \mathrm{~S}_{3}(1.2 \mathrm{mmol})$, Ho (Aldrich, $\left.99 \%, 1.0 \mathrm{mmol}\right), \mathrm{Cu}$ (Aldrich, $99.999 \%, 0.5 \mathrm{mmol}$), and S (Aldrich, $99.5 \%, 2.0 \mathrm{mmol}$). The $\mathrm{Rb}_{2} \mathrm{~S}_{3}$ reactive flux (Sunshine et al., 1987) was prepared by the stoichiometric reaction of Rb (Aldrich, $98+\%$) and S in liquid NH_{3}. The reactants were loaded into a fused-silica tube under an argon atmosphere in a glove-box. The tube was sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The sample was heated to 1173 K over a period of 25 h , kept at 1173 K for 3 d , slowly cooled at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$ to 473 K , and then cooled rapidly to room temperature.

Crystal data

$\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$
$M_{r}=766.25$
Orthorhombic, Cmcm
$a=3.9451$ (11) £
$b=13.915$ (4) \AA
$c=16.408$ (5) \AA
$V=900.8(4) \AA^{3}$
$Z=4$
$D_{x}=5.650 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART 1000 CCD diffractometer

ω scans

Absorption correction: numerical face indexed
$T_{\text {min }}=0.047, T_{\text {max }}=0.405$
5433 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.054$
$S=1.39$
673 reflections
38 parameters

Mo $K \alpha$ radiation
Cell parameters from 4507
reflections
$\theta=2.5-29.0^{\circ}$
$\mu=30.77 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Needle, yellow
$0.42 \times 0.068 \times 0.030 \mathrm{~mm}$

673 independent reflections
661 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=29.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-18 \rightarrow 18$
$l=-21 \rightarrow 21$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=2.37 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.55 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00404 (19)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{Rb}-\mathrm{S} 3$	3.2929 (15)	$\mathrm{Ho}-\mathrm{S3}^{\text {vi }}$	2.7865 (10)
$\mathrm{Rb}-\mathrm{S} 2{ }^{\text {i }}$	3.3410 (15)	$\mathrm{Cu} 1-\mathrm{S}^{\text {vii }}$	2.3212 (10)
$\mathrm{Rb}-\mathrm{S}^{\text {ii }}$	3.4604 (12)	$\mathrm{Cu} 1-\mathrm{S}^{\text {iv }}$	2.5438 (14)
$\mathrm{Ho}-\mathrm{S}^{\text {iii }}$	2.6497 (8)	$\mathrm{Cu} 2-\mathrm{S}^{\text {viii }}$	2.3641 (14)
Ho-S3 ${ }^{\text {iv }}$	2.6957 (14)	$\mathrm{Cu} 2-\mathrm{S} 3{ }^{\text {v }}$	2.3674 (8)
Ho-S1 ${ }^{\text {v }}$	2.6995 (9)	$\mathrm{Cu} 2-\mathrm{S}^{\text {iv }}$	2.5473 (15)
$\mathrm{S} 2^{\mathrm{iii}}-\mathrm{Ho}-\mathrm{S} 3^{\text {iv }}$	172.13 (4)	$\mathrm{S3}^{\text {vi }}-\mathrm{Ho}-\mathrm{S3}^{\text {v }}$	90.13 (4)
S2 ${ }^{\text {iii }}-\mathrm{Ho}-\mathrm{S}^{\text {v }}$	92.47 (3)	$\mathrm{S} 2^{\text {vii }}-\mathrm{Cu} 1-\mathrm{S}^{\text {i }}$	116.38 (7)
$\mathrm{S} 3^{\text {iv }}-\mathrm{Ho}-\mathrm{S}^{\text {v }}$	92.89 (3)	$\mathrm{S} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{S} 1^{\text {iv }}$	105.05 (2)
$\mathrm{S} 1^{\mathrm{v}}-\mathrm{Ho}-\mathrm{S}^{\text {vi }}$	93.89 (4)	$\mathrm{S} 1^{\text {iv }}-\mathrm{Cu} 1-\mathrm{S} 1$	120.96 (6)
$\mathrm{S} 2{ }^{\text {iii }}-\mathrm{Ho}-\mathrm{S} 3{ }^{\text {vi }}$	87.95 (4)	S1 ${ }^{\text {viii }}-\mathrm{Cu} 2-\mathrm{S} 3{ }^{\text {v }}$	108.94 (4)
$\mathrm{S} 3^{\text {iv }}-\mathrm{Ho}-\mathrm{S3}^{\text {vi }}$	86.50 (3)	$\mathrm{S}^{\mathrm{v}}-\mathrm{Cu} 2-\mathrm{S} 3{ }^{\text {vi }}$	112.86 (5)
$\mathrm{S} 1^{\mathrm{v}}-\mathrm{Ho}-\mathrm{S3}^{\text {vi }}$	178.05 (3)	S1 ${ }^{\text {viii }}-\mathrm{Cu} 2-\mathrm{S} 1^{\text {iv }}$	115.43 (4)
S1 ${ }^{\text {vi }}-\mathrm{Ho}-\mathrm{S}^{\text {vi }}$	87.99 (3)	$\mathrm{S} 3^{\mathrm{v}}-\mathrm{Cu} 2-\mathrm{S} 1^{\text {iv }}$	105.36 (4)
$\begin{aligned} & \text { Symmetry codes: (i) } x-\frac{1}{2}, y-\frac{1}{2}, z \text {; (ii) } \frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z \text {; (iii) }-x, 1-y, 1-z \text {; (iv) } \\ & x, y, \frac{1}{2}-z \text {; (v) } \frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z \text {; (vi) }-\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z \text {; (vii) } \frac{1}{2}+x, y-\frac{1}{2}, z \text {; (viii) } \\ & -x,-y, \frac{1}{2}+z \text {. } \end{aligned}$			

Figure 2
The structure of $\mathrm{RbHo}_{2} \mathrm{Cu}_{3} \mathrm{~S}_{5}$, viewed down [100].

The highest residual electron density is $0.87 \AA$ from the Ho site and the deepest hole is $0.70 \AA$ from this same site.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Huang, F. Q. \& Ibers, J. A. (2000). J. Solid State Chem. 151, 317-322.
Mitchell, K. \& Ibers, J. A. (2002). Chem. Rev. 102, 1929-1952.
Sheldrick, G. M. (2003). SHELXTL. DOS/Windows/NT Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Sunshine, S. A., Kang, D. \& Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 62026204.

Yao, J., Deng, B., Ellis, D. E. \& Ibers, J. A. (2003). J. Solid State Chem. 176, 512.

